新东方网>沈阳新东方学校>中学资讯>正文

中考数学知识点:二次函数与一元二次方程的联系

2019-02-02 15:39

来源:

作者:


  新一轮中考复习备考周期正式开始,沈阳新东方学校为各位考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《中考数学知识点:二次函数与一元二次方程的联系》,仅供参考!


  二次函数与一元二次方程的联系
 
  特别地,二次函数(以下称函数)y=ax^2+bx+c,
 
  当y=0时,二次函数为关于x的一元二次方程(以下称方程),
 
  即ax^2+bx+c=0
 
  此时,函数图像与x轴有无交点即方程有无实数根。
 
  函数与x轴交点的横坐标即为方程的根。
 
  1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
 
  解析式
 
  y=ax^2;
 
  y=ax^2+K
 
  y=a(x-h)^2;
 
  y=a(x-h)^2+k
 
  y=ax^2+bx+c
 
  顶点坐标
 
  (0,0)
 
  (0,K)
 
  (h,0)
 
  (h,k)
 
  (-b/2a,4ac-b^2/4a)
 
  对 称 轴
 
  x=0
 
  x=0
 
  x=h
 
  x=h
 
  x=-b/2a
 
  当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,
 
  当h<0时,则向左平行移动|h|个单位得到.
 
  当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
 
  当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;
 
  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)?+k的图象;
 
  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)?+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。
 
  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
 
  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a).
 
  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
 
  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
 
  (1)图象与y轴一定相交,交点坐标为(0,c);
 
  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
 
  (a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
 
  当△=0.图象与x轴只有一个交点;
 
  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
 
  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
 
  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
 
  6.用待定系数法求二次函数的解析式
 
  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
 
  y=ax^2+bx+c(a≠0).
 
  (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
 
  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
 
  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

更多学习资料,学习指导,课程咨询,售后服务,

您可以点击沈阳新东方学校沈阳新东方学校欢迎您的浏览和学习,您的关注是我们前进的动力!

新东方沈阳学校官方微信:(微信号:xdfhhr123

最新报班优惠、课程大纲及课件,请扫描二维码,关注我们的官方微信!

焦点推荐

版权及免责声明

凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。

本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。

如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。

免费申请学习规划

已为29471位学员提供学习规划

*验证码

*短信验证码

400-024-0009

在线咨询